博客
关于我
【题解】括号树
阅读量:187 次
发布时间:2019-02-28

本文共 1025 字,大约阅读时间需要 3 分钟。

在这里插入图片描述

solution:

本题是个树上问题,但我们不妨从线性状态上去考虑。这题就是一道区间dp了。

问题:给定字符串S,求有多少合法括号子串?

()()(())

f [ i ] f[i] f[i]表示前 i i i个的合法子串个数, g [ i ] g[i] g[i]表示以 i i i结尾的合法字符串个数。

考虑如下转移:

g [ i ] = g [ k ] + 1 g[i]=g[k]+1 g[i]=g[k]+1

f [ i ] = f [ i − 1 ] + g [ i ] f[i]=f[i-1]+g[i] f[i]=f[i1]+g[i]

其中 [ k + 1 , i ] [k+1,i] [k+1,i]为合法子串。

例如,上图中, [ 5 , 8 ] [5,8] [5,8] ( ( ) ) (()) (())为合法子串,所以 g [ 8 ] = g [ 4 ] + 1 = 3 g[8]=g[4]+1=3 g[8]=g[4]+1=3 f [ 8 ] = f [ 7 ] + g [ 8 ] = 3 + 3 = 6 f[8]=f[7]+g[8]=3+3=6 f[8]=f[7]+g[8]=3+3=6

上述过程可以用栈模拟。时间复杂度是 O ( n ) O(n) O(n)

如何扩展到树上呢?我们知道, d f s dfs dfs是有回溯操作的,即一个分支结束后可以回到原始状态。这就很巧妙了,我们只需要用一个栈模拟回溯操作就行了。这样就得到了点到根的原括号序列 S S S O ( 1 ) O(1) O(1)转移,时间复杂度 O ( n ) O(n) O(n)

#include
#define int long longusing namespace std;const int N=5e5+5;char s[N];int n,fa[N],ans;int sta[N],Top,f[N],g[N];vector
son[N];void dfs(int x) { if(s[x]=='(') { sta[++Top]=x; f[x]=f[fa[x]]; g[x]=0; for(int i=0;i
0){ int t=sta[Top--]; g[x]=g[fa[t]]+1; f[x]=f[fa[x]]+g[x]; for(int i=0;i

转载地址:http://down.baihongyu.com/

你可能感兴趣的文章
multiprocessing.Pool:map_async 和 imap 有什么区别?
查看>>
MySQL Connector/Net 句柄泄露
查看>>
multiprocessor(中)
查看>>
mysql CPU使用率过高的一次处理经历
查看>>
Multisim中555定时器使用技巧
查看>>
MySQL CRUD 数据表基础操作实战
查看>>
multisim变压器反馈式_穿过隔离栅供电:认识隔离式直流/ 直流偏置电源
查看>>
mysql csv import meets charset
查看>>
multivariate_normal TypeError: ufunc ‘add‘ output (typecode ‘O‘) could not be coerced to provided……
查看>>
MySQL DBA 数据库优化策略
查看>>
multi_index_container
查看>>
MySQL DBA 进阶知识详解
查看>>
Mura CMS processAsyncObject SQL注入漏洞复现(CVE-2024-32640)
查看>>
Mysql DBA 高级运维学习之路-DQL语句之select知识讲解
查看>>
mysql deadlock found when trying to get lock暴力解决
查看>>
MuseTalk如何生成高质量视频(使用技巧)
查看>>
mutiplemap 总结
查看>>
MySQL DELETE 表别名问题
查看>>
MySQL Error Handling in Stored Procedures---转载
查看>>
MVC 区域功能
查看>>